jueves, 9 de julio de 2009

Máquinas Electricas de corriente Alterna




Máquinas de Corriente Alterna (Asincrónicas).
El motor asincrónico es una máquina de corriente alterna, sin colector, de la que solamente una parte, el rotor o el estator, está conectada a la red y la otra parte trabaja por inducción siendo la frecuencia de las fuerzas electromotrices inducidas proporcional al resbalamiento.
La elección de un motor de cualquier tipo para una determinada instalación requiere el conocim

iento de dos conjuntos de características, las del motor y las de la instalación, algunas necesarias porque están impuestas, y no pueden ser elegidas arbitrariamente, otras en cambio pueden ser seleccionadas entre un conjunto de posibles.
Para adoptar efectivamente el motor se deben tener en cuenta las exigencias de la instalación donde se lo va a utilizar, considerando que como el motor tendrá ciertos límites, estos no deberán ser superados; por otra parte el motor con sus características propias, impondrá a la instalación ciertos requerimientos, que esta deberá satisfacer.

Motores monofásicos.
Fueron los primeros motores utilizados en la industria. Cuando este tipo de motores está en operación, desarrolla un campo magnético rotatorio, pero antes de que inicie la rotación, el estator produce un campo estacionario pulsante.
Para producir un campo rotatorio y un par de arranque, se debe tener un devanado auxiliar defasado 90° con respecto al devanado principal. Una vez que el motor ha arrancado, el devanado auxiliar se desconecta del circuito.
Debido a que un motor de corriente alterna (C.A.) monofásico tiene dificultades para arrancar, esta constituido de dos grupos de devanados: El primer grupo se conoce como el devanado principal o de trabajo, y el segundo, se le conoce como devanado auxiliar o de arranque. Los devanados difieren entre sí, física y eléctricamente. El devanado de trabajo está formado de conductor grueso y tiene más espiras que el devanado de arranque.








Tipos y características
Los motores monofásicos han sido perfeccionados a través de los años, a partir del tipo original de repulsión, en varios tipos mejorados, y en la actualidad se conocen:
Motores de fase partida: En general consta de una carcasa, un estator formado por laminaciones, en cuyas ranuras aloja las bobinas de los devanados principal y auxiliar, un rotor formado por conductores a base de barras de cobre o aluminio embebidas en el rotor y conectados por medio de anillos de cobre en ambos extremos, denominado lo que se conoce como una jaula de ardilla.
Se les llama así, por que se asemeja a una jaula de ardilla. Fueron de los primeros motores monofásicos usados en la industria, y aún permanece su aplicación en forma popular. Estos motores se usan en: máquinas herramientas, ventiladores, bombas, lavadoras, secadoras y una gran variedad de aplicaciones; la mayoría de ellos se fabrican en el rango de 1/30 (24.9 W) a 1/2 HP (373 W).


2. Motores de arranque con capacitor: Este tipo de motor es similar en su construcción al de fase partida, excepto que se conecta un capacitor en serie con el devanado de arranque para tener un mayor par de arranque. Su rango de operación va desde fracciones de HP hasta 15 HP. Es utilizado ampliamente en muchas aplicaciones de tipo monofásico, tales como accionamiento de máquinas herramientas (taladros, pulidoras, etcétera), compresores de aire, refrigeradores, etc.


3. Motores con permanente: Utilizan un capacitor conectado en serie con los devanados de arranque y de trabajo. El crea un retraso en el devanado de arranque, el cual es necesario para arrancar el motor y para accionar la carga. La principal diferencia entre un motor con permanente y un motor de arranque con capacitor, es que no se requiere switch centrífugo.

Éstos motores no pueden arrancar y accionar cargas que requieren un alto par de arranque.


4. Motores de inducción-repulsión: Los motores de inducción-repulsión se aplican donde se requiere arrancar cargas pesadas sin demandar demasiada corriente. Se fabrican de 1/2 HP hasta 20 HP, y se aplican con cargas típicas como: compresores de aire grandes, equipo de refrigeración, etc.


5. Motores de polos sombreados: Este tipo de motores es usado en casos específicos, que tienen requerimientos de potencia muy bajos. Su rango de potencia está comprendido en valores desde 0.0007 HP hasta 1/4 HP, y la mayoría se fabrica en el rango de 1/100 a 1/20 de HP. La principal ventaja de estos motores es su simplicidad de construcción, su confiabilidad y su robustez, además, tienen un bajo costo. A diferencia de otros motores monofásicos de C.A., los motores de fase partida no requieren de partes auxiliares (capacitores, escobillas, conmutadores, etc.) o partes móviles (switches centrífugos). Esto hace que su mantenimiento sea mínimo y relativamente sencillo.


Motores trifásicos.
Los motores trifásicos usualmente son más utilizados en la industria, ya que en el sistema trifásico se genera un campo magnético rotatorio en tres fases, además de que el sentido de la rotación del campo en un motor trifásico puede cambiarse invirtiendo dos puntas cualesquiera del estator, lo cual desplaza las fases, de manera que el campo magnético gira en dirección opuesta.








Tipos y características
Los motores trifásicos se usan para accionar máquinas-herramientas, bombas, elevadores, ventiladores, sopladores y muchas otras máquinas. Básicamente están construidos de tres partes esenciales: Estator, rotor y tapas. El estator consiste de un marco o carcasa y un núcleo laminado de acero al silicio, así como un devanado formado por bobinas individuales colocadas en sus ranuras. Básicamente son de dos tipos:
 De jaula de ardilla.
 De rotor devanado
El de jaula de ardilla es el más usado y recibe este nombre debido a que parece una jaula de ardilla de aluminio fundido. Ambos tipos de rotores contienen un núcleo laminado en contacto sobre el eje. El motor tiene tapas en ambos lados, sobre las cuales se encuentran montados los baleros sobre los que rueda el rotor. Estas tapas se fijan a la carcasa en ambos extremos por medio de tomillos de sujeción. Los baleros o chumaceras pueden ser de rodillos o de deslizamiento.






Aplicación
Como sabemos, el motor eléctrico es una maquina rotatoria de movimiento infinito, que convierte energía eléctrica en energía mecánica, como consecuencia desarrollamos directamente en su aplicación trabajos mecánicos primordialmente rotatorios, sin embargo, mediante dispositivos, podemos convertir el movimiento rotatorio en movimientos bien determinados, dependiendo de su aplicación.


Condiciones de alimentación
Los motores eléctricos pueden ser alimentados por sistemas de una fase, denominándose motores monofásicos; y si son alimentados por 2 líneas de alimentación, se les nombra motores bifásicos; siendo así que los motores trifásicos son aquellos que se alimentan de tres fases, también conocidos como sistemas polifásicos. Los voltajes empleados más comúnmente son: 127 V, 220 V, 380 V, 440 V, 2 300 V y 6 000 V.



Máquinas sincrónicas.
Los motores sincrónicos funcionan a una velocidad sincrónica fija proporcional a la frecuencia de la corriente alterna aplicada. Su construcción es semejante a la de los alternadores Cuando un motor sincrónico funciona a potencia Constante y sobreexcitado, la corriente absorbida por éste presenta, respecto a la tensión aplicada un ángulo de desfase en avance que aumenta con la corriente de excitación
Esta propiedad es la que ha mantenido la utilización del motor sincrónico en el campo industrial, pese a ser el motor de inducción más simple, más económico y de cómodo arranque, ya que con un motor sincrónico se puede compensar un bajo factor de potencia en la instalación al suministrar aquél la corriente reactiva, de igual manera que un Condensador conectado a la red.
Esta fundamentado en la reversibilidad de un alternador. El campo interior de una aguja se orienta de acuerdo a la polaridad que adopta en cada momento el campo giratorio en que se haya inmersa y siempre el polo S de la aguja se enfrenta al polo N cambiable de posición del campo giratorio, la aguja sigue cambiando con la misma velocidad con que lo hace el campo giratorio. Se produce un perfecto sincronismo entre la velocidad de giro del campo y la de la aguja.
Si tomamos un estator de doce ranuras y lo alimentamos con corriente trifásica, se creará un campo giratorio. Si al mismo tiempo a las bobinas del rotor le aplicamos una C.C, girará hasta llegar a sincronizarse con la velocidad del campo giratorio, de tal manera que se enfrentan simultáneamente polos de signos diferentes, este motor no puede girar a velocidades superiores a las de sincronismo, de tal forma que será un motor de velocidad constante.
La velocidad del campo y la del rotor, dependerán del número de pares de polos magnéticos que tenga la corriente. Un motor de doce ranuras producirá un solo par de polos y a una frecuencia de 60 Hz, girará a 3600 R.P.M.



Como se verá el principal inconveniente que presenta los motores sincrónicos, es que necesitan una C.C. para la excitación de las bobinas del rotor, pero en grandes instalaciones (Siderúrgicas), el avance de corriente que produce el motor sincrónico compensa parcialmente el retraso que determinan los motores asincrónicos, mejorando con ello el factor de potencia general de la instalación, es decir, el motor produce sobre la red el mismo efecto que un banco de condensadores, el mismo aprovechamiento de esta propiedad, es la mayor ventaja del motor sincrónico.






No hay comentarios:

Publicar un comentario